
micro:bit Physical
Computing Fundamentals

Physical Computing for
Code.org CS Fundamentals Course C

2

Contents

1. Welcome to micro:bit Physical Computing Fundamentals 3

 What you’ll find in this guide 4

 CS Fundamentals and physical computing 5

 An introduction to the BBC micro:bit physical computing device 6

2. “Meet your micro:bit” exploration 7

 What your students will learn 8

 Lesson format 9

 Equipment list 9

 “Meet your microbit” video guide 9

 Before the lesson preparation 10

 Lesson 1: Meet your micro:bit 12

 Warm up 12

 Main activity 13

 Wrap up 14

 CS talking points for code 15

 Extended learning 17

3. Coding lessons 18

 Coding lesson menu 19

 How to teach the coding lessons 20

 Lesson 2: Emotion badge coding 22

 Lesson 3: Calming LEDs coding 25

 Lesson 4: Counter coding 28

4. Vocabulary 31

3

Section 1
Welcome to micro:bit Physical

Computing Fundamentals

4

Welcome to micro:bit Physical
Computing Fundamentals
What you’ll find in this guide
This guide contains everything you need to use the BBC micro:bit to add the
immersive power of physical computing to your teaching of Code.org’s CS
Fundamentals Course C.

You’ll find:
 � An introductory exploration lesson so you and your students can get

to know some of the micro:bit’s features and start making links with prior
learning.

 � A coding lesson menu to help you choose lessons that suit your students.
 � A guide to teaching the coding lessons, which explains how you can use

different resources that suit your students, such as step-by-step coding
videos and micro:bit classroom sessions.

 � Three coding lessons to choose from matched to relevant CS topics.
 � Key vocabulary relevant to CS Fundamentals Course C and physical

computing with the micro:bit.

https://studio.code.org/s/coursec
https://studio.code.org/s/coursec

5

What your students will learn —
CS Fundamentals and physical computing
Lessons in this guide build on what your students are already learning and allow
them to transfer that from the screen into physical projects they can code and hold
in their hands.

Computing topics from CS Fundamentals covered in these lessons include:
 � Events – actions that cause something to happen
 � Sequencing – putting commands in correct order so computers can read

them
 � Loops – the action of doing something over and over again
 � Data – a collection of information
 � Input – the information computers get from users or sensors
 � Output – the information users get from computers
 � Variables – labels for pieces of information used in a program

Note that inputs and outputs are covered in CS Fundamentals Course F but are
included here as they are key concepts in physical computing.
Variables, used in the “Counter” coding lesson, are not covered explicitly in CS
Fundamentals Course C, but your students may have used them as a game score
counter in step 11 of Lesson 13: Mini Project: Chase Game.
There are four micro:bit physical computing guides for CS Fundamentals Courses
C through F, so you can use micro:bit projects with students from second grade
through fifth grade.

https://studio.code.org/s/coursec-2023/lessons/13

6

An introduction to the BBC micro:bit physical
computing device

The BBC micro:bit is a tiny computer used by millions of children around the world.
It’s packed with inputs like buttons and sensors for light, movement, temperature,
magnetism, and sound. It can also output pictures, numbers, and words on its LED
display, make sound and music, and even communicate with other micro:bits using
radio.
The micro:bit needs instructions—programs—to tell it what to do. Using the online
Microsoft MakeCode block editor, your students will be able to create working
code in seconds which they can test out in the simulator before transferring them
to a real micro:bit over a USB cable. They can then unplug the micro:bit from the
computer, attach a battery pack, and use their projects anywhere.
By making micro:bit projects, your students can take their code off the screen and
make self-contained physical devices they can hold in the palms of their hands,
making abstract computing concepts tangible.
You can find out more about the BBC micro:bit, including more projects, lessons,
and support, on our website: https://microbit.org/

https://microbit.org/

7

Section 2
“Meet your micro:bit”

exploration lesson

8

“Meet your micro:bit” exploration lesson

What your students will learn
This lesson is a pre-requisite for teaching the coding lessons in this guide. It
gives your students an early hands-on experience to discover the excitement that
learning with the micro:bit offers.
It helps reinforce what your students already know about code and computing
concepts by transferring them to the physical world through exploring pre-
programmed micro:bits.
The exploration is also designed for you to model reviewing code together, helping
your students make links between familiar computing concepts and their practical
application by programming a physical device.

9

Lesson format
The lesson requires some short preparation to transfer the exploratory project onto
micro:bits to share with your students:

 � Watch the video
 � Put code onto micro:bits

Then teach the lesson:
 � Warm-up: introduce the micro:bit and the activity.
 � Main activity: students work in pairs to explore pre-programmed micro:bits.

They’ll explore different physical inputs and outputs while you challenge
them to think about what computing concepts might be being used to make
the program work.

 � Wrap-up: discuss what they’ve discovered and look at the project code
together. You’ll start to familiarize yourselves with the online Microsoft
MakeCode block editor.

You can optionally follow this with another lesson where students recreate the code
for themselves.

Equipment list
You will need:

 � Access to the MakeCode online editor on the teacher’s computer.
 � Several micro:bits with micro USB cords. One micro:bit for every two to

three students is ideal.
 � A power source for the micro:bits. Battery packs are best, but you can

also power them from computer USB ports.

“Meet your microbit” video guide
We’ve created a YouTube video to introduce this first lesson to you:
https://mbit.io/csf-1-lesson-guide

10

Before the lesson preparation

This is also a chance to familiarize yourself with the main parts of the
MakeCode editor:

The Simulator, a virtual micro:bit that lets you demonstrate working code
to your students, and lets your students test, debug, iterate, and improve
their code before transferring it to their micro:bits. Click on button A to try
it out.

The Toolbox, where you’ll find the code blocks you need.

The Workspace, where you’ll assemble program code blocks.

The Download button. Click on this when you’re ready to transfer code
to a micro:bit connected by a micro USB cable to your computer.

1

2

3

4

1 2

3

4

Get to know the MakeCode editor
Follow this link to open the “Meet your micro:bit” MakeCode project:
https://mbit.io/csf-1-project

https://mbit.io/csf-1-project

11

Transfer the project code onto your class micro:bits
Click on “Download” to save the MakeCode blocks program as a HEX file. This a
special version of the program the micro:bit can understand.

Plug a micro:bit into your computer’s USB port. It should appear on your computer
like a USB flash storage drive called MICROBIT.

Drag and drop the “Meet your micro:bit” HEX file from your computer’s downloads
folder to the MICROBIT drive. You should see a light on the back of your micro:bit
flash as it copies. The program will start running on the micro:bit as soon as the
copying is complete. Note that programs stay on the micro:bit even when the
power is disconnected.
Copy this HEX file onto several micro:bits—one for every two to three students is
ideal.

12

Lesson 1: Meet your micro:bit

Warm up
Introduction Introduce the BBC micro:bit to your students:

 � The micro:bit is a tiny computer you can program to
make self-contained projects to do different things.

 � For it to work, it first needs to be programmed to tell it
what to do.

 � Today you’ll be given micro:bits that have already
been programmed. What can you figure out about the
micro:bit and the code that makes it work?

Events The program on these micro:bits responds to different
events—can your students work out what they are?
(Pressing different buttons and shaking the micro:bit)

Inputs & Outputs Your students should consider what inputs—ways of
getting information into the computer—this micro:bit
project is using: the buttons, the accelerometer that senses
when you shake the micro:bit, and the light sensor that
measures how much light is falling on the micro:bit.
Also ask your students what outputs it’s using. Outputs
are used to send information from a computer out into the
world—for example pictures and text on the micro:bit’s LED
display.

A note about sound
If your students have the BBC micro:bit V2, they’ll also hear different sounds
on the built-in speaker output when they press different buttons and shake the
micro:bit. You could ask your students to think about what kinds of information
they can communicate with sound. Can sounds be happy? Sad? Fast? Slow?
Can sounds even say “hello” or “goodbye”?
If your students have the micro:bit V1, they can hear the sounds by connecting
headphones or an amplified speaker with alligator clips to pin 0 and pin
GND—the diagram in the MakeCode simulator shows you how to make the
connection. This is not essential—you can run this activity completely
without sound.

13

Main activity
Examine the
micro:bit

Students work in pairs or small groups to investigate the
micro:bit and identify events, inputs, outputs, and any
coding concepts they recognize from prior learning.
They can optionally record their findings in any way you
wish—for example on paper, whiteboards, or electronically.
It can also be informal or formal—for example in a table.

Explore the “Meet
your micro:bit”
project

Students should...
 � Connect a power source (battery pack or USB cord)

and notice what happens (a happy face appears on
the LED display output).

 � Press button A to see a zooming square animation.
Does it repeat? How many times? Does it get faster or
slower? What computing concepts might be making
this work? (A sequence to make an animation; loops
to make the animation repeat).

 � Press button B to see text scroll across the display.
Where else do they see visual information displayed
like this? What might they use it for on the micro:bit?

 � Press buttons A and B together to make a sun or
moon appear. Can your students figure out what is
making the image change? (The LED display output
can also work as a light sensor input, so if they cover
the micro:bit they’ll see a moon, and if they shine light
on it they’ll see a sun).

Get hands on!

14

Wrap up
Discussion Ask your students to discuss what they discovered

with you and the class.
Share the code (https://mbit.io/csf-1-project)
with your students and see how many computing
concepts they already know that are used to make
the project work. You can use the simulator as you
go.
Talk about as many of the event blocks as
are appropriate to the time available and your
students’ prior learning.

Code Expert!

https://mbit.io/csf-1-project

15

CS talking points for code
“on start” event block
The micro:bit starting to run the program is the
event that triggers the “on start” block. “show
icon happy” is the first instruction. So, we see a
happy face on the micro:bit when it’s powered up.
It’s an opportunity to talk about visual displays
as outputs, which are how computers send
information out into the world.

“on button A pressed” event block
“on button A pressed”, “on button B pressed”, “on
button A plus B pressed” and “on shake” are all
input blocks, triggered by different events.
The “on button A pressed” block is triggered by
the event of pressing the button A input on the
micro:bit. It then carries out the instructions to play
the sound output and display the zooming square
animation.
If you used sound in your exploration, look at the
“start melody” block and listen to the sounds
when you click on the buttons in the simulator.
After the sound starts playing, a loop starts,
repeating an animation two times.
The display shows a square getting bigger quickly
and getting smaller slowly.
The sequence of images makes up the animation.
The pause blocks keep images on the screen
for different times—smaller numbers make the
animation faster, larger numbers make it slower.

16

“on button B pressed” event block
The “on button B pressed” input block uses
another event to trigger instructions that clear the
screen, pause briefly, then show the word “hello”
as a greeting on the LED display output. What else
do your students think they could use that for?

“on button A+B pressed” event block
The “on button A+B pressed” input block reacts
to the event of pressing both buttons at the same
time.

The program uses a conditional statement:
If the light level is less than 50, then it shows a
moon on the LED display output.
Else (otherwise) it shows a sun.
This part of the code shows different pictures on
the display output, depending on the amount of
light around you.
The light level is measured by another input, the
“light level” block, which measures how much light
is falling on the micro:bit.
So, the LED display works as a light sensor input
and also as an output to display our pictures and
messages.
What could your students build with a tiny
computer that knows when it’s light or dark around
you?

17

“on shake” event block
The “on shake” input block is triggered by an
event when the micro:bit’s accelerometer sensor
detects movement. The micro:bit shows a
surprised face, pauses for one second, and clears
the screen.
Ask your students what other technology they
know that reacts to movement.
How might you use movement in your own
projects?

Extended learning

Other resources You can use any of these resources to support an
optional follow-up lesson, where your students
recreate the code for themselves and practice
transferring code to their micro:bits. You can further
challenge them to remix the code to add more
inputs and outputs.

 � Introduction video: https://mbit.io/csf-1-intro
 � Step-by-step coding video:

https://mbit.io/csf-1-coding
 � Completed MakeCode project:

https://mbit.io/csf-1-project
 � micro:bit classroom session:

https://mbit.io/csf-1-classroom
 � View the project page on the microbit.org

website: https://mbit.io/csf-1-make

https://mbit.io/csf-1-intro
https://mbit.io/csf-1-coding
https://mbit.io/csf-1-project
https://mbit.io/csf-1-classroom
https://mbit.io/csf-1-make

18

Section 3
Coding lessons

19

Coding lesson menu
Use this table to pick the projects that will work best for your students. They don’t need to
be taught in sequence—you can pick as many or as few as you like.

Beginner Intermediate Stretch

Title Lesson 2:
Emotion badge

Lesson 3:
Calming LEDs

Lesson 4:
Counter

Description Program the micro:bit to
show different emotion
icons when you press
different buttons.

Program a timed animation
to help you regulate your
breathing and relax.

Make a clicker you can use
to count anything around
you—like wildlife, traffic,
or trash—as part of a data
study.

Key
Concepts

 � Events
 � Inputs and outputs

 � Sequencing
 � Loops

 � Data
 � Variables*

CSTA
Standards

CS - Computing
Systems

1A-CS-02 - Use appropriate
terminology in identifying and
describing the function of
common physical components
of computing systems (hard-
ware).

AP - Algorithms &
Programming

1A-AP-09 - Model the way
programs store and manip-
ulate data by using numbers
or other symbols to represent
information.

1A-AP-11 - Decompose (break
down) the steps needed to
solve a problem into a precise
sequence of instructions.

CS - Computing
Systems

1A-CS-02 - Use appropriate
terminology in identifying and
describing the function of
common physical components
of computing systems (hard-
ware).

AP - Algorithms &
Programming

1A-AP-11 - Decompose (break
down) the steps needed to
solve a problem into a precise
sequence of instructions.

1A-AP-14 - Debug (identify
and fix) errors in an algorithm
or program that includes se-
quences and simple loops.

DA - Data & Analysis

1A-DA-05 - Store, copy,
search, retrieve, modify, and
delete information using a
computing device and define
the information stored as data.

1A-DA-06 - Collect and pres-
ent the same data in various
visual formats.

AP - Algorithms &
Programming

1A-AP-09 - Model the way
programs store and manip-
ulate data by using numbers
or other symbols to represent
information.

1B-AP-09 - Create programs
that use variables to store and
modify data.

*Note: variables are not covered explicitly in CS Fundamentals Course C but your students may have
used them as a game score counter in Course C Lesson 13: Mini Project: Chase Game.

https://studio.code.org/s/coursec-2023/lessons/13

20

Warm up
Explain the aim Explain the project aim

Reinforce key
learning

Reinforce key learning relevant to CS Fundamentals and
make connections with prior learning by either:

 � Watching an introduction video together
- or -

 � Exploring the micro:bit project. Transfer the project
code from the editor before the lesson to some
micro:bits, which you can pass around your class like
you did in “Meet your micro:bit”

Examine the code Examine a completed program in the online simulator with
your class by projecting the simulator as a giant virtual
micro:bit, which gives you the option to look at the code
blocks together

Main activity

Student coding Student coding activity. Pick whichever method suits your
teaching style and students:

 � Step-by-step coding videos
 � A micro:bit classroom live coding session (see

bottom of page 21)

Coding lessons
How to teach the coding lessons
Make sure you’ve completed the “Meet your micro:bit” exploration lesson, then use
the coding lesson menu (on page 19) to choose which lessons are the best fit for
your students.

Follow this format when you’re teaching any of the projects that follow:

21

Wrap up
Discussion For reflection on key learning

CS talking points for code

Code blocks Completed program blocks so you know where your
students need to get to and can judge at a glance how
complex each project is; explanations are provided so you
can talk about how the code works with your students and
help them debug

Extended learning
Idea Suggestions for additional learning that build off the lesson

micro:bit classroom
Each lesson activity’s code can be opened directly in micro:bit classroom,
our free tool for teaching live coding lessons. Before the lesson, you can view
the code for yourself and decide what starter code to give your students.
You can break the code blocks apart so they have to reassemble them, add
instructions as comments (https://mbit.io/csf-comments), remove certain
blocks, or give them a blank canvas.

Key features of micro:bit classroom:
 � Free of charge
 � No logins, registration, or passwords needed for teachers or students
 � Set starter code for your students
 � View students’ code from your computer in real time
 � Download a snapshot of all students’ code at any time as a Word

document
 � Save the whole lesson as a single file so you can resume it at a later

date
 � Keep control of all your students’ data

Find out more at https://classroom.microbit.org/

https://mbit.io/csf-comments
https://classroom.microbit.org/

22

Lesson 2: Emotion badge
coding
Level: Beginner

Warm up
Explain the aim Program the micro:bit to show different emotion

images when you press different buttons. This
could be used to help people who have difficulty
reading facial expressions.

Reinforce key learning Watch the introduction video:
https://mbit.io/csf-c2-intro
- or -
Explore the project, uploaded onto micro:bits
prior to the lesson: https://mbit.io/csf-c2-project
Discuss where these concepts are being used and
where students may have used them before:

 � Events: actions that cause something
happen (e.g., press a button on the micro:bit
to make something appear on the display)

 � Inputs: information computers get from
users or sensors (e.g., button press)

 � Outputs: information users get from
computers (e.g., LED display showing happy
or sad image)

Examine the code Share the project working in the simulator with
your students and look at the code together prior
to students coding the main activity:
https://mbit.io/csf-c2-project

https://mbit.io/csf-c2-intro
https://mbit.io/csf-c2-project
https://mbit.io/csf-c2-project

23

Main activity
Student coding Students make the project themselves using the

editor and simulator, then transferring code to
micro:bits.
Pick one from:

 � Step-by-step coding video:
https://mbit.io/csf-c2-coding

 � Live micro:bit classroom session:
https://mbit.io/csf-c2-classroom

Wrap up
Discussion Share student work, revisit key concepts used,

and explore ideas for extended learning.

CS talking points for code
Completed program for
teachers

https://mbit.io/csf-c2-project

An event happens when you press the button A
input on the micro:bit. This block reacts to that
event, causing a happy face icon to be shown on
the micro:bit’s LED display output.

When you press the button B input, another event
happens, causing a sad face icon to be shown on
the LED display output.

https://mbit.io/csf-c2-coding
https://mbit.io/csf-c2-classroom
https://mbit.io/csf-c2-project

24

Extended learning
A+B input Add another input block to react to the event

when you press buttons A+B together. The output
it triggers should show a different emotion.

Use the “show leds”
block

Design your own “emoji”.

Find this project and more
on microbit.org

https://mbit.io/csf-c2-make

https://mbit.io/csf-c2-make

25

Lesson 3: Calming LEDs
coding
Level: Intermediate

Warm up
Explain the aim Program a micro:bit to make a timed animation to

help you regulate your breathing and relax.

Reinforce key learning Watch the introduction video:
https://mbit.io/csf-c3-intro
- or -
Explore the project, uploaded onto micro:bits
prior to the lesson: https://mbit.io/csf-c3-project

Discuss where these concepts are being used and
where students may have used them before:

 � Sequencing: putting commands in correct
order so computers can read them (e.g., the
diamond animation on LED display)

 � Loop: the action of doing something over
and over again (e.g., to keep the animation
going forever)

Examine the code Share the project working in the simulator with
your students and look at the code together prior
to students coding the main activity:
https://mbit.io/csf-c3-project

https://mbit.io/csf-c3-intro
https://mbit.io/csf-c3-project
https://mbit.io/csf-c3-project

26

Main activity
Student coding Students make the project themselves using the

editor and simulator, then transferring code to
micro:bits.
Pick one from:

 � Step-by-step coding video:
https://mbit.io/csf-c3-coding

 � Live micro:bit classroom session:
https://mbit.io/csf-c3-classroom

Wrap up
Discussion Share student work, revisit key concepts used,

and explore ideas for extended learning.

CS talking points for code
Completed program for
teachers

https://mbit.io/csf-c3-project

https://mbit.io/csf-c3-coding
https://mbit.io/csf-c3-classroom
https://mbit.io/csf-c3-project

27

A forever loop keeps the animation running as
long as the micro:bit has power.
A sequence made of “pause”, “show leds” and
“show icon” blocks makes an animation appear.
“pause” makes the micro:bit wait before carrying
out the next instruction in your code. Bigger
numbers make it pause longer and slow down the
animation.
“show leds” lets you light any of the micro:bit’s
LED lights to make your own patterns on the
display output.
“show icon” lets you show one of the micro:bit’s
built-in images.

Extended learning
Pause blocks Change the times in the pause blocks to match

your own preferred pace of breathing.

New images Create different images to replace the diamonds.

Find this project and more
on microbit.org

https://mbit.io/csf-c3-make

https://mbit.io/csf-c3-make

28

Lesson 4: Counter coding
Level: Stretch

Warm up
Explain the aim Make a clicker you can use to count anything

around you—like wildlife, traffic, or trash—as part
of a data study.

Reinforce key learning Watch the introduction video:
https://mbit.io/csf-c4-intro
- or -
Explore the project, uploaded onto micro:bits
prior to the lesson: https://mbit.io/csf-c4-project

Discuss where these concepts are being used and
where students may have used them before:

 � Data: a collection of information (e.g.,
different things you count with the micro:bit)

 � Variable: a label for a piece of information
used in a program (e.g., the “count” variable
used to track what you’re counting)

Examine the code Share the project working in the simulator with
your students and look at the code together prior
to students coding the main activity:
https://mbit.io/csf-c4-project

https://mbit.io/csf-c4-intro
https://mbit.io/csf-c4-project
https://mbit.io/csf-c4-project

29

Main activity
Student coding Students make the project themselves using the

editor and simulator, then transferring code to
micro:bits.
Pick one from:

 � Step-by-step coding video:
https://mbit.io/csf-c4-coding

 � Live micro:bit classroom session:
https://mbit.io/csf-c4-classroom

Wrap up
Discussion Share student work, revisit key concepts used,

and explore ideas for extended learning.

CS talking points for code

Completed program for
teachers

https://mbit.io/csf-c4-project

At the start of the program, 0 is shown on the
micro:bit’s LED display output. A variable called
“count” is created and set to 0.

When button A is pressed, an event occurs which
triggers the “show number” block. This shows the
current value of the “count” variable on the display
output.

Increase the counter by pressing button B. This
event increases the value of “count” variable by 1,
regardless of what its current value is.
The sequence is important here: you must change
the count variable before you show its value,
otherwise the value shown will be out-of-date.

https://mbit.io/csf-c4-coding
https://mbit.io/csf-c4-classroom
https://mbit.io/csf-c4-project

30

Reset the counter to 0 by pressing buttons A and
B at the same time.

Extended learning
Data collection Use this “Counter” project to collect data which

your students can then visualize in different ways
as part of a math lesson.

Reach a target Show a heart or another picture when you reach
a certain number—it could be your target for
jumping jacks or another activity.

Find this project and more
on microbit.org

https://mbit.io/csf-c4-make

https://mbit.io/csf-c4-make

31

Section 4
Vocabulary

32

Vocabulary
Here are key computing terms from Code.org’s CS Fundamentals Course C which
are relevant to the lessons in this guide, along with some words frequently used in
physical computing.

 � Algorithm – A list of steps to finish a task.
 � Bug – Part of a program that does not work correctly.
 � Data – A collection of information.
 � Debugging – Finding and fixing problems in an algorithm or program.
 � Graph – A picture or a diagram that represents data or values in an organized

manner.
 � Hardware – The physical, electronic parts of a computer system.
 � Input – The information computers get from users or sensors. (This term is

covered in CS Fundamentals Course F but is included here as inputs and
outputs are key concepts in physical computing).

 � Event – An action that causes something to happen.
 � LED – Light Emitting Diode. The micro:bit has 25 LEDs on the front arranged

in a 5 x 5 grid for showing pictures, numbers, and words.
 � Loop – The action of doing something over and over again.
 � MakeCode – The Microsoft block editor used for creating programs for

your micro:bit. It’s similar to Scratch and the block code editors used in CS
Fundamentals.

 � micro:bit – A tiny computer packed with sensors, inputs, and outputs.
 � Output – The information users get from computers. (This term is covered in

CS Fundamentals Course F but is included here as inputs and outputs are
key concepts in physical computing).

 � Program – An algorithm that has been coded into something that can be run
by a machine.

 � Programming – The art of creating a program.
 � Repeat – To do something again.
 � Sensor – A device that detects or records changes in the environment, such

as the micro:bit’s sensors for temperature, light, movement, and magnetism.

33

 � Sequencing – Putting commands in correct order so computers can read
them.

 � Simulator (MakeCode) – A pretend, or virtual, micro:bit in the MakeCode
editor that lets you test your programs before transferring them to a real
micro:bit.

 � Software – Programs made of code that tell computer what to do.
 � Toolbox (MakeCode) – The middle part of the MakeCode editor where you

find all the code blocks you need to build your micro:bit programs.
 � Variable – A label for a piece of information used in a program. (This concept

is introduced in CS Fundamentals Course F but is used in the “Counter”
project in this booklet).

 � USB – Universal Serial Bus, the connection used to connect a computer to a
micro:bit to transfer programs to it.

 � Workspace (MakeCode) – The right-hand part of the MakeCode editor
where you assemble code blocks into programs.

Further reading
You can find more computing vocabulary for Code.org’s CS Fundamentals
Course C: https://studio.code.org/s/coursec-2023/vocab
The Micro:bit Educational Foundation web site also has a list of terms useful when
teaching physical computing: https://microbit.org/teach/for-teachers/glossary/

https://studio.code.org/s/coursec-2023/vocab
https://microbit.org/teach/for-teachers/glossary/

